Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Mol Ecol Resour ; 24(1): e13882, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37864541

RESUMO

Transition to novel environments, such as groundwater colonization by surface organisms, provides an excellent research ground to study phenotypic evolution. However, interspecific comparative studies on evolution to groundwater life are few because of the challenge in assembling large ecological and molecular resources for species-rich taxa comprised of surface and subterranean species. Here, we make available to the scientific community an operational set of working tools and resources for the Asellidae, a family of freshwater isopods containing hundreds of surface and subterranean species. First, we release the World Asellidae database (WAD) and its web application, a sustainable and FAIR solution to producing and sharing data and biological material. WAD provides access to thousands of species occurrences, specimens, DNA extracts and DNA sequences with rich metadata ensuring full scientific traceability. Second, we perform a large-scale dated phylogenetic reconstruction of Asellidae to support phylogenetic comparative analyses. Of 424 terminal branches, we identify 34 pairs of surface and subterranean species representing independent replicates of the transition from surface water to groundwater. Third, we exemplify the usefulness of WAD for documenting phenotypic shifts associated with colonization of subterranean habitats. We provide the first phylogenetically controlled evidence that body size of males decreases relative to that of females upon groundwater colonization, suggesting competition for rare receptive females selects for smaller, more agile males in groundwater. By making these tools and resources widely accessible, we open up new opportunities for exploring how phenotypic traits evolve in response to changes in selective pressures and trade-offs during groundwater colonization.


Assuntos
Isópodes , Animais , Filogenia , Isópodes/genética , Ecossistema , DNA , Sequência de Bases
3.
PLoS Comput Biol ; 11(11): e1004459, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26588097

RESUMO

The somite segmentation clock is a robust oscillator used to generate regularly-sized segments during early vertebrate embryogenesis. It has been proposed that the clocks of neighbouring cells are synchronised via inter-cellular Notch signalling, in order to overcome the effects of noisy gene expression. When Notch-dependent communication between cells fails, the clocks of individual cells operate erratically and lose synchrony over a period of about 5 to 8 segmentation clock cycles (2-3 hours in the zebrafish). Here, we quantitatively investigate the effects of stochasticity on cell synchrony, using mathematical modelling, to investigate the likely source of such noise. We find that variations in the transcription, translation and degradation rate of key Notch signalling regulators do not explain the in vivo kinetics of desynchronisation. Rather, the analysis predicts that clock desynchronisation, in the absence of Notch signalling, is due to the stochastic dissociation of Her1/7 repressor proteins from the oscillating her1/7 autorepressed target genes. Using in situ hybridisation to visualise sites of active her1 transcription, we measure an average delay of approximately three minutes between the times of activation of the two her1 alleles in a cell. Our model shows that such a delay is sufficient to explain the in vivo rate of clock desynchronisation in Notch pathway mutant embryos and also that Notch-mediated synchronisation is sufficient to overcome this stochastic variation. This suggests that the stochastic nature of repressor/DNA dissociation is the major source of noise in the segmentation clock.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Relógios Biológicos/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Receptores Notch/metabolismo , Somitos/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Biologia Computacional , Receptores Notch/genética , Fatores de Transcrição/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
4.
Front Cell Neurosci ; 9: 74, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25814931

RESUMO

The Notch signaling pathway controls differentiation of hair cells and supporting cells in the vertebrate inner ear. Here, we have investigated whether Numb, a known regulator of Notch activity in Drosophila, is involved in this process in the embryonic chick. The chicken homolog of Numb is expressed throughout the otocyst at early stages of development and is concentrated at the basal pole of the cells. It is asymmetrically allocated at some cell divisions, as in Drosophila, suggesting that it could act as a determinant inherited by one of the two daughter cells and favoring adoption of a hair-cell fate. To test the implication of Numb in hair cell fate decisions and the regulation of Notch signaling, we used different methods to overexpress Numb at different stages of inner ear development. We found that sustained or late Numb overexpression does not promote hair cell differentiation, and Numb does not prevent the reception of Notch signaling. Surprisingly, none of the Numb-overexpressing cells differentiated into hair cells, suggesting that high levels of Numb protein could interfere with intracellular processes essential for hair cell survival. However, when Numb was overexpressed early and more transiently during ear development, no effect on hair cell formation was seen. These results suggest that in the inner ear at least, Numb does not significantly repress Notch activity and that its asymmetric distribution in dividing precursor cells does not govern the choice between hair cell and supporting cell fates.

5.
Development ; 141(8): 1780-8, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24715465

RESUMO

Formation of somites, the rudiments of vertebrate body segments, is an oscillatory process governed by a gene-expression oscillator, the segmentation clock. This operates in each cell of the presomitic mesoderm (PSM), but the individual cells drift out of synchrony when Delta/Notch signalling fails, causing gross anatomical defects. We and others have suggested that this is because synchrony is maintained by pulses of Notch activation, delivered cyclically by each cell to its neighbours, that serve to adjust or reset the phase of the intracellular oscillator. This, however, has never been proved. Here, we provide direct experimental evidence, using zebrafish containing a heat-shock-driven transgene that lets us deliver artificial pulses of expression of the Notch ligand DeltaC. In DeltaC-defective embryos, in which endogenous Notch signalling fails, the artificial pulses restore synchrony, thereby rescuing somite formation. The spacing of segment boundaries produced by repetitive heat-shocking varies according to the time interval between one heat-shock and the next. The induced synchrony is manifest both morphologically and at the level of the oscillations of her1, a core component of the intracellular oscillator. Thus, entrainment of intracellular clocks by periodic activation of the Notch pathway is indeed the mechanism maintaining cell synchrony during somitogenesis.


Assuntos
Relógios Biológicos , Proteínas de Homeodomínio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptor Notch1/metabolismo , Somitos/citologia , Somitos/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Contagem de Células , Embrião não Mamífero/metabolismo , Resposta ao Choque Térmico , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Modelos Biológicos , Fatores de Tempo , Transgenes , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo
6.
PLoS Biol ; 11(6): e1001586, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23776410

RESUMO

FBW7 is a crucial component of an SCF-type E3 ubiquitin ligase, which mediates degradation of an array of different target proteins. The Fbw7 locus comprises three different isoforms, each with its own promoter and each suspected to have a distinct set of substrates. Most FBW7 targets have important functions in developmental processes and oncogenesis, including Notch proteins, which are functionally important substrates of SCF(Fbw7). Notch signalling controls a plethora of cell differentiation decisions in a wide range of species. A prominent role of this signalling pathway is that of mediating lateral inhibition, a process where exchange of signals that repress Notch ligand production amplifies initial differences in Notch activation levels between neighbouring cells, resulting in unequal cell differentiation decisions. Here we show that the downstream Notch signalling effector HES5 directly represses transcription of the E3 ligase Fbw7ß, thereby directly bearing on the process of lateral inhibition. Fbw7(Δ/+) heterozygous mice showed haploinsufficiency for Notch degradation causing impaired intestinal progenitor cell and neural stem cell differentiation. Notably, concomitant inactivation of Hes5 rescued both phenotypes and restored normal stem cell differentiation potential. In silico modelling suggests that the NICD/HES5/FBW7ß positive feedback loop underlies Fbw7 haploinsufficiency. Thus repression of Fbw7ß transcription by Notch signalling is an essential mechanism that is coupled to and required for the correct specification of cell fates induced by lateral inhibition.


Assuntos
Linhagem da Célula , Proteínas F-Box/metabolismo , Retroalimentação Fisiológica , Intestinos/citologia , Células-Tronco Neurais/citologia , Receptores Notch/metabolismo , Proteínas Repressoras/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Contagem de Células , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Proteínas F-Box/genética , Proteína 7 com Repetições F-Box-WD , Regulação da Expressão Gênica , Loci Gênicos , Células Caliciformes/citologia , Células Caliciformes/metabolismo , Células HCT116 , Haploinsuficiência , Humanos , Camundongos Knockout , Modelos Biológicos , Células-Tronco Neurais/metabolismo , Transcrição Gênica , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
7.
Development ; 140(2): 444-53, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23250218

RESUMO

A gene expression oscillator called the segmentation clock controls somite segmentation in the vertebrate embryo. In zebrafish, the oscillatory transcriptional repressor genes her1 and her7 are crucial for genesis of the oscillations, which are thought to arise from negative autoregulation of these genes. The period of oscillation is predicted to depend on delays in the negative-feedback loop, including, most importantly, the transcriptional delay - the time taken to make each molecule of her1 or her7 mRNA. her1 and her7 operate in parallel. Loss of both gene functions, or mutation of her1 combined with knockdown of Hes6, which we show to be a binding partner of Her7, disrupts segmentation drastically. However, mutants in which only her1 or her7 is functional show only mild segmentation defects and their oscillations have almost identical periods. This is unexpected because the her1 and her7 genes differ greatly in length. We use transgenic zebrafish to measure the RNA polymerase II elongation rate, for the first time, in the intact embryo. This rate is unexpectedly rapid, at 4.8 kb/minute at 28.5°C, implying that, for both genes, the time taken for transcript elongation is insignificant compared with other sources of delay, explaining why the mutants have similar clock periods. Our computational model shows how loss of her1 or her7 can allow oscillations to continue with unchanged period but with reduced amplitude and impaired synchrony, as manifested in the in situ hybridisation patterns of the single mutants.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , RNA Polimerase II/metabolismo , Somitos/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fluoresceínas/metabolismo , Células HEK293 , Humanos , Imunoprecipitação/métodos , Modelos Biológicos , Modelos Teóricos , Mutação , Oscilometria/métodos , RNA Polimerase II/genética , Temperatura , Fatores de Tempo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
8.
Development ; 139(24): 4656-65, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23172917

RESUMO

Somites are formed from the presomitic mesoderm (PSM) and give rise to the axial skeleton and skeletal muscles. The PSM is dynamic; somites are generated at the anterior end, while the posterior end is continually renewed with new cells entering from the tailbud progenitor region. Which genes control the conversion of tailbud progenitors into PSM and how is this process coordinated with cell movement? Using loss- and gain-of-function experiments and heat-shock transgenics we show in zebrafish that the transcription factor Mesogenin 1 (Msgn1), acting with Spadetail (Spt), has a central role. Msgn1 allows progression of the PSM differentiation program by switching off the progenitor maintenance genes ntl, wnt3a, wnt8 and fgf8 in the future PSM cells as they exit from the tailbud, and subsequently induces expression of PSM markers such as tbx24. msgn1 is itself positively regulated by Ntl/Wnt/Fgf, creating a negative-feedback loop that might be crucial to regulate homeostasis of the progenitor population until somitogenesis ends. Msgn1 drives not only the changes in gene expression in the nascent PSM cells but also the movements by which they stream out of the tailbud into the PSM. Loss of Msgn1 reduces the flux of cells out of the tailbud, producing smaller somites and an enlarged tailbud, and, by delaying exhaustion of the progenitor population, results in supernumerary tail somites. Through its combined effects on gene expression and cell movement, Msgn1 (with Spt) plays a key role both in genesis of the paraxial mesoderm and in maintenance of the progenitor population from which it derives.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Diferenciação Celular/genética , Movimento Celular/genética , Células-Tronco Embrionárias/fisiologia , Mesoderma/embriologia , Proteínas de Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Rastreamento de Células , Desenvolvimento Embrionário/genética , Células-Tronco Embrionárias/metabolismo , Mesoderma/citologia , Mesoderma/metabolismo , Somitos/embriologia , Somitos/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Proteínas com Domínio T/fisiologia , Cauda/embriologia , Tronco/embriologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
9.
PLoS One ; 6(9): e24484, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21915337

RESUMO

The stem cells of the small intestine are multipotent: they give rise, via transit-amplifying cell divisions, to large numbers of columnar absorptive cells mixed with much smaller numbers of three different classes of secretory cells--mucus-secreting goblet cells, hormone-secreting enteroendocrine cells, and bactericide-secreting Paneth cells. Notch signaling is known to control commitment to a secretory fate, but why are the secretory cells such a small fraction of the population, and how does the diversity of secretory cell types arise? Using the mouse as our model organism, we find that secretory cells, and only secretory cells, pass through a phase of strong expression of the Notch ligand Delta1 (Dll1). Onset of this Dll1 expression coincides with a block to further cell division and is followed in much less than a cell cycle time by expression of Neurog3--a marker of enteroendocrine fate--or Gfi1--a marker of goblet or Paneth cell fate. By conditional knock-out of Dll1, we confirm that Delta-Notch signaling controls secretory commitment through lateral inhibition. We infer that cells stop dividing as they become committed to a secretory fate, while their neighbors continue dividing, explaining the final excess of absorptive over secretory cells. Our data rule out schemes in which cells first become committed to be secretory, and then diversify through subsequent cell divisions. A simple mathematical model shows how, instead, Notch signaling may simultaneously govern the commitment to be secretory and the choice between alternative modes of secretory differentiation.


Assuntos
Ciclo Celular/fisiologia , Diferenciação Celular/fisiologia , Intestino Delgado/citologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Ciclo Celular/genética , Diferenciação Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Imuno-Histoquímica , Hibridização In Situ , Técnicas In Vitro , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Proteínas de Membrana/genética , Camundongos , Modelos Teóricos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Development ; 138(14): 2947-56, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21653612

RESUMO

We describe the production and characterisation of two monoclonal antibodies, zdc2 and zdd2, directed against the zebrafish Notch ligands DeltaC and DeltaD, respectively. We use our antibodies to show that these Delta proteins can bind to one another homo- and heterophilically, and to study the localisation of DeltaC and DeltaD in the zebrafish nervous system and presomitic mesoderm (PSM). Our findings in the nervous system largely confirm expectations from previous studies, but in the PSM we see an unexpected pattern in which the localisation of DeltaD varies according to the level of expression of DeltaC: in the anterior PSM, where DeltaC is plentiful, the two proteins are colocalised in intracellular puncta, but in the posterior PSM, where DeltaC is at a lower level, DeltaD is seen mainly on the cell surface. Forced overexpression of DeltaC reduces the amount of DeltaD on the cell surface in the posterior PSM; conversely, loss-of-function mutation of DeltaC increases the amount of DeltaD on the cell surface in the anterior PSM. These findings suggest an explanation for a long-standing puzzle regarding the functions of the two Delta proteins in the somite segmentation clock--an explanation that is based on the proposition that they associate heterophilically to activate Notch.


Assuntos
Anticorpos Monoclonais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Imunoprecipitação , Hibridização In Situ , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Proteínas de Membrana/imunologia , Mesoderma/metabolismo , Microscopia Confocal , Proteínas do Tecido Nervoso/imunologia , Sistema Nervoso/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas de Peixe-Zebra/imunologia
11.
Gastroenterology ; 140(4): 1230-1240.e1-7, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21238454

RESUMO

BACKGROUND & AIMS: Ablation of Notch signaling within the intestinal epithelium results in loss of proliferating crypt progenitors due to their conversion into postmitotic secretory cells. We aimed to confirm that Notch was active in stem cells (SCs), investigate consequences of loss of Notch signaling within the intestinal SC compartment, and identify the physiologic ligands of Notch in mouse intestine. Furthermore, we investigated whether the induction of goblet cell differentiation that results from loss of Notch requires the transcription factor Krüppel-like factor 4 (Klf4). METHODS: Transgenic mice that carried a reporter of Notch1 activation were used for lineage tracing experiments. The in vivo functions of the Notch ligands Jagged1 (Jag1), Delta-like1 (Dll1), Delta-like4 (Dll4), and the transcription factor Klf4 were assessed in mice with inducible, gut-specific gene targeting (Vil-Cre-ER(T2)). RESULTS: Notch1 signaling was found to be activated in intestinal SCs. Although deletion of Jag1 or Dll4 did not perturb the intestinal epithelium, inactivation of Dll1 resulted in a moderate increase in number of goblet cells without noticeable effects of progenitor proliferation. However, simultaneous inactivation of Dll1 and Dll4 resulted in the complete conversion of proliferating progenitors into postmitotic goblet cells, concomitant with loss of SCs (Olfm4(+), Lgr5(+), and Ascl2(+)). Klf4 inactivation did not interfere with goblet cell differentiation in adult wild-type or in Notch pathway-deficient gut. CONCLUSIONS: Notch signaling in SCs and progenitors is activated by Dll1 and Dll4 ligands and is required for maintenance of intestinal progenitor and SCs. Klf4 is dispensable for goblet cell differentiation in intestines of adult Notch-deficient mice.


Assuntos
Células-Tronco Adultas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mucosa Intestinal/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Receptor Notch1/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Células-Tronco Adultas/citologia , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Contagem de Células , Diferenciação Celular/fisiologia , Divisão Celular/fisiologia , Células Caliciformes/citologia , Células Caliciformes/metabolismo , Homeostase/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Mucosa Intestinal/citologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteína Jagged-1 , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Receptor Notch1/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Serrate-Jagged , Transdução de Sinais/fisiologia
12.
Porto Alegre; Artmed; 3. ed; 2011. 843 p.
Monografia em Português | LILACS, Coleciona SUS, Sec. Est. Saúde SP | ID: biblio-940392
14.
Nat Methods ; 7(3): 219-23, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20139970

RESUMO

To trace cell lineages in a developing vertebrate and to observe, in vivo, how behaviors of individual cells are affected by the genes they express, we created a zebrafish line containing a transgene called mosaic analysis in zebrafish (MAZe), built around a self-excising hsp70:Cre cassette. Heat shock triggers Cre recombinase-mediated recombination in a random subset of cells, bringing the transcriptional activator Gal4:VP16 under control of the EF1alpha promoter. Gal4-VP16 then activates expression of a fluorescent protein from an upstream activating sequence (UAS) promoter. Marked clones of cells expressing any desired gene product can be generated by crossing MAZe fish with other lines containing UAS-driven transgenes. The number of clones induced, and their time of origin, could be varied by adjusting heat-shock timing and duration. As an alternative to heat shock, we introduced Cre under a tissue-specific promoter in MAZe fish to generate clones in a designated tissue.


Assuntos
Mosaicismo , Transgenes , Peixe-Zebra/genética , Animais , Sequência de Bases , Fusão Celular , Proteínas de Choque Térmico HSP70/genética , Integrases/fisiologia , Dados de Sequência Molecular , Mioblastos/metabolismo , Especificidade de Órgãos , Regiões Promotoras Genéticas , Recombinação Genética
17.
J Biol ; 8(4): 44, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19486506

RESUMO

The Notch signaling pathway has multifarious functions in the organization of the developing vertebrate embryo. One of its most fundamental roles is in the emergence of the regular pattern of somites that will give rise to the musculoskeletal structures of the trunk. The parts it plays in the early operation of the segmentation clock and the later definition and differentiation of the somites are beginning to be understood.


Assuntos
Relógios Biológicos/fisiologia , Receptores Notch/metabolismo , Transdução de Sinais , Somitos/embriologia , Somitos/metabolismo , Vertebrados/embriologia , Vertebrados/metabolismo , Animais , Regulação da Expressão Gênica , Somitos/citologia
18.
Dev Biol ; 326(1): 86-100, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19013445

RESUMO

Unlike mammals, birds regenerate auditory hair cells (HCs) after injury. During regeneration, mature non-sensory supporting cells (SCs) leave quiescence and convert into HCs, through non-mitotic or mitotic mechanisms. During embryogenesis, Notch ligands from nascent HCs exert lateral inhibition, restricting HC production. Here, we examined whether Notch signaling (1) is needed in mature birds to maintain the HC/SC pattern in the undamaged auditory epithelium or (2) governs SC behavior once HCs are injured. We show that Notch pathway genes are transcribed in the mature undamaged epithelium, and after HC injury, their transcription is upregulated in the region of highest mitotic activity. In vitro treatment with DAPT, an inhibitor of Notch activity, had no effect on SCs in the undamaged epithelium. Following HC damage, DAPT had no direct effect on SC division. However, after damage, DAPT caused excessive regeneration of HCs at the expense of SCs, through both mitotic and non-mitotic mechanisms. Conversely, overexpression of activated Notch in SCs after damage caused them to maintain their phenotype and inhibited HC regeneration. Therefore, signaling through Notch is not required for SC quiescence in the healthy epithelium or to initiate HC regeneration after damage. Rather, Notch prevents SCs from regenerating excessive HCs after damage.


Assuntos
Galinhas/fisiologia , Células Ciliadas Auditivas/citologia , Receptores Notch/fisiologia , Regeneração/fisiologia , Células-Tronco/citologia , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Dipeptídeos/farmacologia , Epitélio/fisiologia , Células Ciliadas Auditivas/fisiologia , Células Labirínticas de Suporte/citologia , Células Labirínticas de Suporte/fisiologia , Mitose/fisiologia , Células-Tronco/fisiologia , Técnicas de Cultura de Tecidos
19.
Science ; 322(5900): 399-403, 2008 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-18927385

RESUMO

We now have a wealth of information about the molecular signals that act on cells in embryos, but how do the control systems based on these signals generate pattern and govern the timing of developmental events? Here, I discuss four examples to show how mathematical modeling and quantitative experimentation can give some useful answers. The examples concern the Bicoid gradient in the early Drosophila embryo, the dorsoventral patterning of a frog embryo by bone morphogenetic protein signals, the auxin-mediated patterning of plant meristems, and the Notch-dependent somite segmentation clock.


Assuntos
Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário , Meristema/crescimento & desenvolvimento , Transdução de Sinais , Animais , Padronização Corporal , Proteínas Morfogenéticas Ósseas/metabolismo , Drosophila/embriologia , Drosophila/metabolismo , Proteínas de Drosophila , Retroalimentação Fisiológica , Proteínas de Homeodomínio/metabolismo , Ácidos Indolacéticos/metabolismo , Matemática , Meristema/metabolismo , Modelos Biológicos , Receptores Notch/metabolismo , Somitos/embriologia , Transativadores/metabolismo , Xenopus/embriologia , Xenopus/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo
20.
Nature ; 454(7202): 335-9, 2008 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-18563087

RESUMO

The vertebrate body axis is subdivided into repeated segments, best exemplified by the vertebrae that derive from embryonic somites. The number of somites is precisely defined for any given species but varies widely from one species to another. To determine the mechanism controlling somite number, we have compared somitogenesis in zebrafish, chicken, mouse and corn snake embryos. Here we present evidence that in all of these species a similar 'clock-and-wavefront' mechanism operates to control somitogenesis; in all of them, somitogenesis is brought to an end through a process in which the presomitic mesoderm, having first increased in size, gradually shrinks until it is exhausted, terminating somite formation. In snake embryos, however, the segmentation clock rate is much faster relative to developmental rate than in other amniotes, leading to a greatly increased number of smaller-sized somites.


Assuntos
Padronização Corporal , Embrião de Galinha/embriologia , Camundongos/embriologia , Serpentes/embriologia , Somitos/embriologia , Peixe-Zebra/embriologia , Animais , Padronização Corporal/genética , Regulação da Expressão Gênica no Desenvolvimento , Dados de Sequência Molecular , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...